If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-18x=115
We move all terms to the left:
x^2-18x-(115)=0
a = 1; b = -18; c = -115;
Δ = b2-4ac
Δ = -182-4·1·(-115)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-28}{2*1}=\frac{-10}{2} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+28}{2*1}=\frac{46}{2} =23 $
| 3x-19=-20 | | 50t=-10t+80 | | -10-16n=342 | | 28c+24=360 | | (x-3)=(8x+3)° | | 17.1-8.2y=-7.02 | | 1/4x-13=-10 | | X^2+6x+x+14=2(6x-1) | | 46=8y | | w-4+13=10 | | -36+2=4b+9 | | 4-11m=37 | | 3(3)-8y=39 | | 1+2a=10+5a | | (12+2x)=4x | | -19x-17=-150 | | A=240•(1/3)^t | | 1-2i=6+3i | | 18n+3=-249 | | Xx7-12=Xx2+8 | | 7=3w=+1 | | (3x+2)=35 | | (5q+7)(8q-3)=0 | | 3c+13=4c | | 7x+2=12x-22 | | -2x+68=2x+32 | | c(3c+1)=0 | | -13x-6=-448 | | (4y+7)(y-8)=0 | | 8b-7=9b-15 | | 20x-4=18x | | n/21=9 |